Consider system of equations $ x + y -az = 1$ ; $2x + ay + z = 1$ ; $ax + y -z = 2$
for $a \ne 1$ system has unique solution.
if system has no solution then $'a'$ must be $1$ .
for $a \in \left\{ {1,\frac{{ - 1 \pm \sqrt 5 }}{2}} \right\}$ , system has no solution.
for $a = \frac{{ - 1 \pm \sqrt 5 }}{2}$ , system has infinite number of solutions.
If $A \ne O$ and $B \ne O$ are $ n × n$ matrix such that $AB = O,$ then
Let $[.]$ , $ \{.\} $ and $sgn$$(.)$ denotes greatest integer function, fractional part function and signum function respectively, then value of determinant
$\left| {\begin{array}{*{20}{c}}
{\left[ \pi \right]}&{amp(1 + i\sqrt 3 )}&1 \\
1&0&2 \\
{\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} }
\end{array}} \right|$ is-
If $\omega$ is one of the imaginary cube roots of unity, then the value of the determinant $\left| {\begin{array}{*{20}{c}}1&{{\omega ^3}}&{{\omega ^2}}\\ {{\omega ^3}}&1&\omega \\{{\omega ^2}}&\omega &1\end{array}} \right|$ $=$
If the system of equations
$ 11 x+y+\lambda z=-5 $
$ 2 x+3 y+5 z=3 $
$ 8 x-19 y-39 z=\mu$
has infinitely many solutions, then $\lambda^4-\mu$ is equal to :
How many values of $k $ , systeam of linear equations $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y$$ = 3k - 1$ has no solutions.